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A dynamic model of the homogeneous react ion in a s t ream under isothermal  conditions is ex- 
amined. The t ransmiss ion  proper t ies  of the model, which are responsible for the connection 
between the pulsation spectrum of the flame and the coefficient  of air  excess ,  are studied. 

Flame pulsations in the furnaces  of boiler  units represen t  a random process  whose charac te r i s t i c s  
depend on the mode of combustion. The purpose of the present  art icle is to provide an approximate theore-  
t ical  descr ipt ion of this dependence based on simple assumptions concerning the kinetics of the chemical  
react ion and s t ruc ture  of the flame which are  adopted in the theory of furnace p rocesses  [1]. 

Let us consider  the following example of a furnace installation (Fig. 1). 

The fuel ]3 and air  V enter  through a sys tem of burners  into the rec tangular  furnace where the process  
of flame combustion of the fuel takes place. The flame consis ts  of three zones: 

a) The preparat ion zone 1 where the fuel and air  are heated and mixed with reei rcula t ion flows of the 
combustion products;  

b) the ignition zone 2 where the flame elements  (microvolumes) exist in a state cor responding  to 
their  induction per iods:  the ignition front 4 is the outer boundary of this zone; 

c) the combustion zone where the chemical  react ion takes place. 

Jet  flow occurs  everywhere  except for the preparat ion zone where turbulent mixing occurs .  The jets 
do not expand. This assumption is valid for those par ts  of the jets which are located beyond the ignition 
front. Actually, p roces ses  of evaporation or  gasification occur  near the ignition zone, since they mainly 
precede combustion. Moreover ,  the tempera ture  gradients are not great  since the tempera ture  field is 
strongly equalized by radiant heat t ranspor t .  Therefore  thermal  expansion of the jets is also insignificant. 

Pa r t  of the jets r e tu rns  along the rec i rcula t ion contours to the base of the flame and penetrates  into 
the preparat ion zone. It is  assumed that a single main prevail ing rec i rcula t ion flow exists ,  making it 
possible to neglect  the other flows. 

Stabilization of the flame is accomplished by the combustion products ca r r i ed  into the preparat ion 
zone by the rec i rcula t ion  flows. The mode of combustion is diffusional-kinetic,  described on the basis  of 
the assumption that the second-o rde r  react ions  are  i so thermal  with a constant ra te  constant.  Mixing is 
absent in the combustion zone. 

Let us move to a mathematical  descript ion of the process .  We will o rde r  the elements  of the flame. 
Let us sor t  the entire set of its elements  into subsets for which the degree of depletion of the fuel is the 
same.  It is obvious that these subsets do not in tersect  and their  sum fills the entire flame. Each value 
of the degree of depletion cor responds  to a cer ta in  combustion time T which has elapsed f rom the moment 
of ignition of the element.  Therefore  the set of all the elements  of the flame can be ordered with respec t  
to the combustion t ime, with the subset E 0 corresponding to the zero  time and coinciding with the ignition 
zone. 

Let us find the concentrat ions of components in the elements  of the set E~-. In accordance with the 
assumptions made we can write the equations of the react ion (to simplify the notation the arguments  of the 
functions will be omitted): 
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Fig. 1. Structure of flame; 
1) preparat ion zone; 2) ignition 
zone; 3) combustion zone; 4) 
ignition front; 5) reci rcula t ion 
flow. 

dt  

dc 
- -  = - -  I ~ K g c .  

dt  

Integrating these equations with the condition c0--c = M~0--~) (the law 
of mass action), we fInd the depletion functions 

h 
~(t, ~) =~o-~ ,  

(i) 
A 

c (t, x) --c~ --8 exp (zKA), 

where 

A : c o - -  ~i~0, 6 = c o exp (~KA) - -  g~o" 

The equations (1) have meaningfor  any element of the mixture 
which has burned for the time v. Naturally,  if an element is consi-  
dered at the time t and it is known that T is its combustion time then 
the moment of ignition must  correspond to the value t--v.  Hence it 
follows that the concentrat ions of components in the elements  of the 
set E T are described by the functions (t--v, v) and c(t--v,  ~) given by 
Eqs. ( 1 ) .  

Let us write the condition of continuity of the flame. If v(x) is the volume of the set x then 

v (dE 0 = dv  (E 0 = dv (EO_ dx. (2) 
d* 

For nonexpanding streamtubes the function X(~') = dv(Ev)/dv is constant at all points except for those which 
correspond to periods of the recirculation. At these points the function X(v) has a discontinuity since a 
part of the elements of the flame go outside the limits of the combustion zone into the preparation zone. 
Since according to the assumptions a single cycle of recireulation is considered, the function X(V) has one 
discontinuity. Outside the limits of this discontinuity the function X0") does not affect the dynamics of the 
system and therefore is ignored. 

It follows from the assumption of immiscibility that the condition of closure of the flame can be re- 
presented in the form 

E = U ET, z E 10, T], 
-g 

(3) 
E~ 91E~j = O for "r i ~- "r j, 

The equations of material balance for the ignition zone are: 

d~~ ~ - - f ~ - B - ' R ~ ,  vo a-T 

dco ~ (4) 
Vo L -7 V + R~. 

dt 

The equations of mater ia l  balance for the combustion zone, assuming that the amount of mater ia l  in 
the zone is constant,  a re :  

[~ - -  ~ i t  - -  S u g  (t - -  T ,  T)  - -  R~ = 0,  ( 5 )  

[~ - -  ~2r - -  S u c  ( t  - -  T ,  T )  - -  R e  = O. 

Eliminating the function ft.--1~.~ and fc--t ic f rom Eqs. (4) and (5) we obtain equations descr ib ing the 
var ia t ions  in the initial concentrat ions:  

= - -  ~ - - S u ~  (t - -  T ,  T)  + B, V o 
t C b  

(6) 
dc o 

v o = - -  % - -  Suc  (t - -  T ,  T)  + V.  
dt 

Then it is necessa ry  to calculate the depletion rate  ~ and ~c- For  an a rb i t ra ry  point of space in 
the flame the combustion rate  with respec t  to the fuel is equal to,he derivative --(~/SV)~(t--v, T). For  the 
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Fig. 2. Block d iagram of l inear  t ransformat ions  of disturbed p rocess  
of combustion: b: dis turbance in fuel; v: disturbance in oxygen. 

Fig. 3. Dependence of p a r a m e t e r s  of sys tem on air  excess  (the signs 
are  taken into account in Fig. 2): upper family: function (a t + bc); lower 
family:  function (acbt + a~bc). The numbers  show the value of the para -  
me te r  TK, m3/kg, at~d the p a r a m e t e r s  pand c o are  taken as: # = 1.44; 
c o = 0.21. 

f lame as a whole the fuel combustion ra te  is equal to the integral  of this value taken over  the ent i re  volume 
of the f lame. Using the concept of the Lebesgue--St ie l t jes  integral  [2] and the condition (3) we obtain 

,~ (t) = - -  t" O~ (t - -  ~, ~) ~ (dEO" 
. OT 
E 

Using Eq. (2) we can change to the Riemarm integral  
T 

% (t) = -- J~' O~ (t Or-- r, r) z (t) dr. 
0 

Repeat ing these operat ions for the function ~c we can reduce Eqs.  (6) to form 
T 

vo --~d~~ _ .Jr O~ (t O~-- ~' ~) ~ (~) d~ -- Su~ (t -- T, T) + B, 
0 

r (7) 
dco ~ Oc(t--r, ~) ;((~)d~__Suc(I__T, T )+V 

a?O - -  ~ dt j O~ 
0 

Equations (7) can be solved approximately  with r e spec t  to ~0 and c 0 for smal l  d is turbances .  As was 
shown above, the function X(~) is constant ,  and since its integral  must be equal to the volume of the f lame, 
x(~) = U/T. 

Substituting Eq. (1) into (7) we obtain 

Vo d~o U 
dt T 

U h A 
~o + ~ -  ( ~o-~- ) r-- Su ( ~o-~--)r-}- B, 

&o U + U  ( A ) r  u Co CO dt T --T- -~- exp (TKA) (8) 

_~A exp (TKA)) r + V. - -Su(  c~ 6 

Let us examine the p roper t i e s  of these equations in the vicinity of the equilibrium, state ~; ,  e o de t e r -  
mined by the conditions 
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TABLE i .  Limiting Values of Parameters 

h=0,  x=CoTK 

X 2 X ac 

bc 

b~ 

2~(~ +x) 2 ~(l +x) 

x '~ 1 §  
20 +x)': 1 +x  

x ~ 1 
2 (1 - + x )  ~ l + x  

.px ~ lax 
2 (1 + x)2 (1 + x) 2 

d~o =o, dco =0 .  
dt dt 

Expanding the nonlinear t e rms  in a power se r ies ,  we obtain f rom Eqs. (8) l inearized equations of the 
disturbed motion of the sys tem which, after undergoing a Laplace t ransformat ion,  take the form 

(0/9 ~ 1) ~' = Fa c exp (~  pT) c' .-t- Fa~ exp (-- pT) ~', (9) 

(0p q- 1) c' = Fb c exp (-- pT) c' + Fb~ exp (-- pT) ~', 

where F = (1--SuT/U), 0 = v0T/U. 

The coefficients of Eqs.  (9) a re  equal to the following derivat ives  calculated at the point (~$, c~): 

a~ = ~o a~ - ~o , 
Oco ' 0~o 

be=- Oco c o - ~ - e x p ( T K A )  , b~= c o ~ e x p ( r K h )  . 

(10) 

Equations (9) correspond to the block diagram illustrated in Fig. 2, from which it is seen that the 
combustion process with respect to the disturbances acting on it represents a dynamic system with delayed 
positive feedbacks. If random pulsations in concentration arise in the process of ignition, the spectrum 
of these pulsations, transformed by the dynamic system of the flame, will depend on the mode of combus- 
tion. So-called signal filtration takes place. The law according to which this filtration is accomplished is 
known: the spectral density of the output signal is equal to the product to the spectral density of the distur- 
bance times the square of the modulus of the transmission function [3]. 

Let us investigate how the transmission properties of the flame are connected with the mode of com- 
bustion. Using the topological method [4] it is easy to find transmission functions directly from the diagram 
of Fig. 2. We write the characteristic polynomial as 

L (p) = 1 - -  (a~ + be) F exp (-- pT) (aeb ~ + aibc ) F2 exp (-- 2pT) 
0p + 1 (0p+ I) 2 (11) 

Only the coefficients a~, be,  ac, and b~ depend on the mode of combustion. The coefficient F is 
determined by the geometry of the furnace and the rec i rcula t ion of the flame. If rec i rcula t ion  is absent 
then F = 0. Actually, the value Xb') = U/T is equal to the volumetr ic  flow rate of mater ia l  passing through 
the ignition front while Su equals the volumetr ic  flow ra te  of the combustion products.  If there is no r e -  
circulat ion then U/T = Su and F = 0. The limiting value of F is equal to unity. 

Let us clarify how the values given by Eqs. (10) depend on the coefficient of air excess .  For  the 
purpose of simplification it is convenient to est imate the air  excess  by the value A which is connected with 
it by a monotonic dependence. 

The dependences of the pa ramete r s  of the t ransmiss ion  functions calculated in accordance with Eqs. 
(10) are  presented in Fig. 3, while their  l imiting values are given in Table 1. Let us now turn to the analy- 
sis of the dependence of the t ransmiss ion  functions on the air  excess .  

F r o m  a qualitative point of view it will be sufficient to confine the study to one t ransmiss ion  function. 
Let us discuss  some of the simplifications adopted in the analysis.  
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Fig .  4. Vec to r  d i ag ram  c lar i fy ing  
the dependence of the pulsat ion spec -  
t r um on the a i r  exces s .  

F i r s t ,  we will c~lculate the modulus of the t r a n s m i s s i o n  
function at a f requency w > 0 for which the following inequality 
is sa t i s f ied:  0~o<< 1. Physica l ly  this means  that the frequency 

is not damped b y  the iner t ia l  p rope r t i e s  of the sys t em.  

Second, let us se t  F >> 0. This  will mean that r e e i r c u l a -  
tion is significant.  In the following cons t ruc t ions  we will take 
F = 1, which does not affect  the quali tat ive r e s u l t ;  

With these assumpt ions  the t rans i t ion function will equal 

~' 005] + 1 - -  be exp (--  ]coT) 
W(]o~)= - -  "~ (12) 

b O(o]+l--(a~bc) exp ( - - loT) - -  (ache+ a~bc)exp(--2]oT)" 

The modulus of W(jw) is eas i ly  es t imated  graphical ly .  Let 
us cons ider  the complex plane (~, j~o) (Fig. 4). The s t ra ight  
line pass ing  ver t ica l ly  through the point (1, 0) is the geomet r i ca l  
locus of the ends of  the vec to r  0c0j + 1, designated as a. The 
c i r c l e s  with radius  vec to r s  b, c ,  and d a re  the functions bc exp 

x (--j~T), (a} + bc) exp(--j~fr) and (acb} + a~bc) exp(--2joJT), r e spec t ive ly .  According  to Eq. (i2) the mod-  
ulus of the t r a n s m i s s i o n  function will equal 

I a - - b  I i w !  - 
I a - -  (c + d) I (13) 

It is seen f rom Eq. (13) and Fig.  4 that as the radi i  of the c i r c l e s  dec r ea se  the vec to r  c + d whose 
end l ies  at the point x approaches  the vec to r  a. The i r  d i f ference becomes  very  smal l .  

Hence it follows that the ampli tude of the random pulsat ions is  an e x t r e m a l  function of the a i r  excess ,  
This  conclusion is valid for some frequency ~ which in accordance  with Fig. 4 sa t i s f i es  the inequality 

arctg 0o > (2n - -  c0T) > 0. 

Obviously,  an analogous re la t ionship  will  be observed  with r e spec t  to any physical  value connected 
with the concent ra t ions .  Expe r imen ta l  conf i rmat ion  of this fact can be found in [5]. 

The p rob lem examined can have impor tan t  technical  appl icat ions in the following d i rec t ions :  

1. The de te rmina t ion  of the ae rodynamic  s t ruc tu re  of a f lame f rom its pulsation spec t ra .  One can 
de te rmine  the per iods  of the r ec i r cu la t ion  cyc les  by finding out in which frequency bands of the 
spec t rum  the e x t r e m a  a re  observed .  

2. The opt imum control  of the combust ion p r o c e s s .  Each e x t r e m u m  of the pulsat ions co r r e sponds  to 
some a i r  exce s s ,  with the e x t r e m a l  a i r  exce s se s  being s m a l l e r  for long contours  (see Fig.  3) 
than for shor t  ones.  By instal l ing s eve ra l  p robes  which pick up the pulsat ions of different  cyc les  
one can obtain informat ion on the cu r r en t  value of the a i r  excess .  The obtaining of such i n fo rma-  
tion is a n e c e s s a r y  condition for  opt imizat ion of the p roce s s .  

B 
V 
T 
t 
T 

~o(t) and co(t) 
~(t, T) and c(t ,  ~-) 

K 
p 
E 
E~ 
V 0 

f~(t) 

NOTATION 

is  the weight flow ra te  of fuel; 
is  the weight flow ra te  of oxygen; 
is the t ime  of movement  of mixture  through rec i rcu la t ion  cycle;  
is  the cu r r en t  t ime;  
is the combust ion t ime of a f lame e lements ;  
a re  the concent ra t ions  of fuel and oxygen in ignition zone; 
a r e  the concentra t ions  of fuel and oxygen in that e l ement  of the combust ion zone which 

ignited at the moment  t and has burned for the t ime ~-, where  ~(t, 0) = }0(t) and 
c ( t ,  0) = c0(t) ;  

is  the r a t e  constant  of combustion;  
is the s to ich iomet r ic  coefficient;  
is  the set  of all  f lame e lements ;  
is  the subset  of  those f lame e lements  which have burned for  the t ime T; 
is the average  volume of ignition zone; 
is  the ignition ra te  of fuel by weight; 
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fc(t) 
~ (t) and ~c(t) 
Su 
R~(t) and Re(t) 

U 

P 
CO 

is the rate of supply of oxygen to ignition reaction by weight; 
are the rates of consumption of fuel and oxygen in combustion process by weight; 
is the product of area of output cross section of flame times the gas discharge velocity; 
are the amounts of fuel and oxygen carried into preparation zone by recirculstion flows 

per unit time; 
is the flame volume; 
is the parameter of Laplace transform; 
is the frequency. 

S u b s c r i p t s  

' indicates a deviation from the equilibrium state; 
* indicates the equilibrium state; 
T indicates a delay by the amount T. 

le  
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3. 
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