CONNECTION BETWEEN PULSATION SPECTRUM
OF A FURANCE FLAME AND THE AIR EXCESS
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A dynamic model of the homogeneous reaction in a stream under isothermal conditions is ex-
amined. The transmission properties of the model, which are responsible for the connection
between the pulsation spectrum of the flame and the coefficient of air excess, are studied.

Flame pulsations in the furnaces of boiler units represent a random process whose characteristics
depend on the mode of combustion. The purpose of the present article is to provide an approximate theore-
tical description of this dependence based on simple assumptions concerning the kinetics of the chemical
reaction and structure of the flame which are adopted in the theory of furnace processes [1].

Let us consider the following example of a furnace installation (Fig. 1).

The fuel B and air V enter through a system of burners into the rectangular furnace where the process
of flame combustion of the fuel takes place. The flame consists of three zones:

a) The preparation zone 1 where the fuel and air are heated and mixed with recirculation flows of the
combustion products;

b) the ignition zone 2 where the flame elements (microvolumes) exist in a state corresponding to
their induction periods: the ignition front 4 is the outer boundary of this zone;

¢) the combustion zone where the chemical reaction takes place.

Jet flow occurs everywhere except for the preparation zone where turbulent mixing occurs. The jets
do not expand. This assumption is valid for those parts of the jets which are located beyond the ignition
front. Actually, processes of evaporation or gasification occur near the ignition zone, since they mainly
precede combustion. Moreover, the temperature gradients are not great since the temperature field is
strongly equalized by radiant heat transport. Therefore thermal expansion of the jets is also insignificant.

Part of the jets returns along the recirculation contours to the base of the flame and penetrates into
the preparation zone. If is assumed that a single main prevailing recirculation flow exists, making it
possible to neglect the other flows.

Stabilization of the flame is accomplished by the combustion products carried into the preparation
zone by the recirculation flows. The mode of combustion is diffusional-kinetic, described on the basis of
the assumption that the second-order reactions are isothermal with a constant rate constant. Mixing is
absent in the combustion zone.

Let us move to a mathematical description of the process. We will order the elements of the flame.
Let us sort the entire set of its elements into subsets for which the degree of depletion of the fuel is the
same. It is obvious that these subsets do not intersect and their sum fills the entire flame. Each value
of the degree of depletion corresponds to a certain combustion time 7 which has elapsed from the moment
of ignition of the element. Therefore the set of all the elements of the flame can be ordered with respect
to the combustion time, with the subset E, corresponding to the zero time and coinciding with the ignition
Zone. :

Let us find the concentrations of components in the elements of the set E;. In accordance with the
agsumptions made we can write the equations of the reaction (to simplify the notation the arguments of the
functions will be omitted):
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Integrating these equations with the condition cy—c = p(f—#) (the law
of mass action), we find the depletion functions
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The equations (1) have meaning for any element of the mixture
which has burned for the time 7. Naturally, if an element is consi-
dered at the time t and it is known that 7 is its combustion time then
the moment of ignition must correspond to the value t—7. Hence it
follows that the concentrations of components in the elements of the
set E; are described by the functions (t~7, 7) and c(t—7, 7) given by
Egs. (1).

Let us write the condition of continuity of the flame. If v(x) is the volume of the set x then

Fig. 1. Structure of flame;

1) preparation zone; 2) ignition
zone; 3) combustion zone; 4)
ignition front; 5) recirculation
flow.

v(dE,)) = dv(E,) = L“lvdi@_ ar. )
T

For nonexpanding streamtubes the function x(r) = dv(E;)/dr is constant at all points except for those which
correspond to periods of the recirculation, At these points the function x(r) has a discontinuity since a
part of the elements of the flame go outside the limits of the combustion zone into the preparation zone.
Since according to the assumptions a single cycle of recirculation is considered, the function x(r) has one
discontinuity. Outside the limits of this discontinuity the function x(r) does not affect the dynamics of the
system and therefore is ignored.

It follows from the assumption of immiscibility that the condition of closure of the flame can be re-

presented in the form
E :UEr» TE[O’ TL
T

, (3)
Es, ﬂETJ. =@ for T, %= T,
The equations of material balance for the ignition zone are:
dg, R
v = T B - R”
0 di f§ 3
4)
de,
o—r =—f, + VLR,
Vo it ¢ FR,

The equations of material balance for the combustion zone, assuming that the amount of material in
the zone is constant, are:

fe—Y:— S ({ —T, T)— R, =0,

(5)
fo—%Y.—Suc(t—T, Ty —R,=0.
Eliminating the function f;—R¢ and fo—R¢ from Egs. (4) and (5) we obtain equations describing the
variations in the initial concentrations:
voi‘% = —%; —Suk(t—T, T) + B,
(6)
vo%‘;—" =, —Suc(t—T, T) + V.

Then it is necessary to calculate the depletion rate 3¢ and yo. For an arbitrary point of space in
the flame the combustion rate with respect to the fuel is equal tothe derivative —(8/67)¢{t—7, 7). For the
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Fig. 2. Block diagram of linear transformations of disturbed process
of combustion: b: disturbance in fuel; v: disturbance in oxygen.

Fig. 3. Dependence of parameters of system on air excess (the signs
are taken into account in Fig. 2): upper family: function (a; +be); lower
family: function (acbg + azbe). The numbers show the value of the para-
meter TK, m®/kg, and the parameters pand ¢, are taken as: p = 1,44;

¢y = 0.21.

flame as a whole the fuel combustion rate is equal to the integral of this value taken over the entire volume
of the flame. Using the concept of the Lebesgue—Stieltjes integral [2] and the condition (3) we obtain

b (f) = — ’ _a_g_(t_‘“_ri)_v(dgt),
. Jt
E
Using Eq. (2) we can change to the Riemann integral
T
¥ () = — XMX(T)M.
N ot

0

Repeating these operations for the function y, we can reduce Egs. (6) to form
T

y, Lo :y ai(fa—“ 9 k(3 dv— Sut(t—T, T)+ B,

dt T
T dot (7)
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Equations (7) can be solved approximately with respect to ¢, and ¢, for small disturbances. As was
shown above, the function x(r) is constant, and since its integral must be equal to the volume of the flame,
x{r) = U/T.

Substituting Eq. (1) into (7) we obtain

dz, U U A A)
A a4t T§D+T(§05)T u(§06,7+ ’
wie o U, %—T<co~g—exp(TKA))T (®)

— Su ( Cq ——g— exp (TKA)) + V.
T

Let us examine the properties of these equations in the vicinity of the equilibrium state &:, c’Z deter-
mined by the conditions
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TABLE 1. Limiting Values of Parameters

A=0, x=C,TK
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Expanding the nonlinear terms in a power series, we obtain from Egs. (8) linearized equations of the
disturbed motion of the system which, after undergoing a Laplace transformation, take the form

(Bp 4+ 1)&' = Fa  exp (— pT) ¢’ + Fayexp (— pT) &',

(9)
6p + 1) ¢’ = Fbexp (— pT) ¢’ + Foexp (—pT) &, -
where F = (1—8SuT/U), 6 = v,T/U.
The coefficients of Eqs. (9) are equal to the following derivatives calculated at the point (¢}, c}):
i (3] m (o)
°" de, (”a R g \T s )
1o
Jd f A a A
b, = —_— TKA)), by = —— —exp (TKA) .
= (e KD, b= i e e TKY)

Equations (9) correspond to the block diagram illustrated in Fig. 2, from which it is seen that the
combustion process with respect to the disturbances acting on it represents a dynamic system with delayed
positive feedbacks. If random pulsations in concentration arise in the process of ignition, the spectrum
of these pulsations, transformed by the dynamic system of the flame, will depend on the mode of combus-
tion. So-called signal filtration takes place. The law according to which this filtration is accomplished is
known: the spectral density of the output signal is equal to the product to the spectral density of the distur-
bance times the square of the modulus of the transmission function [3].

Let us investigate how the transmission properties of the flame are connected with the mode of com-
bustion, Using the topological method [4] it is easy to find transmission functions directly from the diagram
of Fig. 2. We write the characteristic polynomial as

—1—(a, ) FERE=PT) oy o 2 %P (—2pT)
L(p) 1 (a; i bc)F op + 1 (acbi i aﬁbc)F (6p+ 1)2 . (11)
Only the coefficients a¢, be, ac, and by depend on the mode of combustion. The coefficient F is
determined by the geometry of the furnace and the recirculation of the flame, If recirculation is absent
then F = 0. Actually, the value x{r) = U/T is equal to the volumetric flow rate of material passing through
the ignition front while Su equals the volumetric flow rate of the combustion products. If there is no re-
circulation then U/T = Su and F = 0, The limiting value of F is equal to unity.

Let us clarify how the values given by Eqs. (10) depend on the coefficient of air excess. For the
purpose of simplification it is convenient to estimate the air excess by the value A which is connected with
it by a monotonic dependence.

The dependences of the parameters of the transmission functions calculated in accordance with Eqs.
(10) are presented in Fig. 3, while their limiting values are given in Table 1, Letf us now turn to the analy-
sis of the dependence of the transmission functions on the air excess.

From a qualitative point of view it will be sufficient to confine the study to one transmission function.
Let us discuss some of the simplifications adopted in the analysis,
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First, we will calculate the modulus of the transmission
function at a frequency w > 0 for which the following inequality
4 is satisfied: 6w < 1, Physically this means that the frequency
w is not damped by the inertial properties of the system.

Jw

~ a
2w7
Second, let us set F > 0, This will mean that recircula-
fuw tion is significant. In the following constructions we will take
7 P F =1, which does not affect the qualitative result.

N
€,
\
*x

With these assumptions the transition function will equal

8 8wj + 1 — b exp (— joT) 12)
b Boj1—(ag-+b,) exp (—joT)— (aby+ azb)exp(—2jeT) *

The modulus of W(jw} is easily estimated graphically. Let

f

W(jo)=

Fig. 4. Vector diagram clarifying us consider the complex plane @, jw) (Fig. 4). The straight
the dependence of the pulsation spec- line passing vertically through the point (1, 0) is the geometrical
trum on the air excess. locus of the ends of the vector 8wj + 1, designated as a. The

circles with radius vectors b, ¢, and d are the functions be exp
X (—jwT), (at +be) exp(—jwT) and (achg + agbe) exp(—2jwT), respectively. According to Eq. (12) the mod-
ulus of the transmission function will equal
, la—Db]
W=
R Py 19
it is seen from Eq. (13) and Fig. 4 that as the radii of the circles decrease the vector ¢ + d whose

end lies at the point x approaches the vector a. Their difference becomes very small.

Hence it follows that the amplitude of the random pulsations is an extremal function of the air excess.
This conclusion is valid for some frequency w which in accordance with Fig. 4 satisfies the inequality

arctg 8o > (25 — 0T) > 0,

Obviously, an analogous relationship will be observed with respect to any physical value connected
with the concentrations. Experimental confirmation of this fact can be found in [5].

The problem examined can have important technical applications in the following directions:

1. The determination of the aerodynamic structure of a flame from its pulsation spectra. One can
determine the periods of the recirculation cycles by finding out in which frequency bands of the
spectrum the extrema are observed,

2, The optimum control of the combustion process. Each extremum of the pulsations corresponds to
some air excess, with the extremal air excesses being smaller for long contours (see Fig. 3)
than for short ones. By installing several probes which pick up the pulsations of different cycles
one can obtain information on the current value of the air excess. The obtaining of such informa-
tion is a necessary condition for optimization of the procass.

NOTATION

is the weight flow rate of fuel;

is the weight flow rate of oxygen;

is the time of movement of mixture through recirculation cycle;

is the current time;

is the combustion time of a flame elements;

£,(t) and cft) . are the concentrations of fuel and oxygen in ignition zone;

£(t, ) and clt, 7)  are the concentrations of fuel and oxygen in that element of the combustion zone which
ignited at the moment t and has burned for the time 7, where (t, 0) = £,(t) and
cit, 0) = cylt);

K is the rate constant of combustion;

e

u is the stoichiometric coefficient;

E is the set of all flame elements;

Es is the subset of those flame elements which have burned for the time 73
vy is the average volume of ignition zone;

f3(t) is the ignitjon rate of fuel by weight;
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fo(t)

4z (t) and go(t)
Su

R¢(t) and Relt)

U
p

w

Subscripts

is the rate of supply of oxygen to ignition reaction by weight;

are the rates of consumption of fuel and oxygen in combustion process by weight;

is the product of area of output cross section of flame times the gas discharge velocity;

are the amounts of fuel and oxygen carried into preparation zone by recirculation flows
per unit time;

is the flame volume;

is the parameter of Laplace transform;

is the frequency.

' indicates a deviation from the equilibrium state;
* indicates the equilibrium state;
indicates a delay by the amount T.
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